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I.   INTRODUCTION 

The thermoelasticity problems found in mechanics usually revolve 

around one of four areas: 

1. The measurement of a body's surface temperature from its 

surface deformation field. 

2. The measurement of thermal gradients at the surface of a body 

from its surface deformation field. 

3. The measurement of thermal-induced deformation at the surface 

of a body. 

A.  The measurement of thermal-induced stress/strain at the 

surface of a body. 

The objective of this report is to present the theory and experimental 

laser speckle interferometry techniques that were used to obtain these 

measurements. Section II lays the foundation ^r using the laser to 

make these noncontact measurements. Since laser speckle interferometry 

is used to measure in-plane motion only, certain restrictions have to 

be imposed on the theory. 

Although the theory is developed for three dimensions, necessary 

simplifications are used to reduce this theory by one dimension. 

Section III consists of two sample problems that were used to test the 

theory of Section II.  The thin circular flat plate and uniformly 

heated rod are treated in Section II.  Section IV presents the 

conclusions drawn from this work. 

II.   THEORETICAL ANALYSIS 

A.  General Thermoelasticity Theory 

The linear theory of elasticity may be used to predict the 

deformation field of a body resulting from thermal-induced stress and 

strain.  A temperature change at an arbitrary location in a body may be 

predicted from the local deformation field.  The theory to follow 

assumes that the body consists of an isotropic hookean material which 

obeys linear thermoelastic behavior.  For anlsotropic materials, the 

theory becomes significantly more involved and will not be treated in 



this analysis. Much of the analysis will be presented in tensor form 

to simplify the work. 

The strain displacement relations from the theory of elasticity may 

he expressed as 

Equation (l) expresses the strain field e.. to the displacement field 

U in the rectangular coordinate system x . The equilibrium equations, 
i « 

which relate the stress field a.. and internal body forces B^ may be 

expressed as 

!!ii+B  = 0   . (2) 
3xj    i 

The following analysis was obtained from reference [1]. The boundary 

condition equation, which relates the stress a^ on an arbitrary plane 

in a body to the body's internal stress field, is given as 

a  = ;. n.   , (3) 
n    ii 

where n are the direction cosines of the plane. In expanded form, the 
i 

components of Eq. (3) become 



o   ^    la     + ma  + na „ nx     xx    xy   xz 

a   =    la      + ma  + na „ ny     xy   yy   yz 

a   =    la      + ma  + na nz     xz    yz    zz 

For a body free of thermal-induced strain, the stress/strain relations 

may be expressed as 

exx = f [CTxx - ^ayy + azzB 

% = H0yy _ V^  + 0zz)] 

TS  [azz " ^axx + ayy^ Ezz    = :    F Laz: 

Exy    : 
1 

=    G0xy 

eyZ   
: 

1 

Ezx    : 
1 

=    GCTzx 
(4) 

In Eq. (4), E is the modulus of elasticity, y is poissons ratio, and G 

is a Lame' constant. 

Using the general stress/strain relations and the concept of thermal- 

induced strains, the change in temperature AT in some local region Q  of 

a body may be related to the displacement field in the region Q [1]. 

First, the thermal-induced strains for a body uniformly heated and 

subject to a free expansion is 



et = aAT   , (5) 

where e is the local normal strain in any direction t of ft, a is the 

coefficient of thermal expansion, and AT is the temperature change over 

fi.  The temperature coupled stress/strain relations are [1] 

ex - «AT = £ [ax - y(oy + az)] 

ey - ^T = ^ [oy - p(az + ax)] 

ez - ^T = ^ [oz - p(ax + a )] 

V : = 2(1; ^ a E          xy 

V^   = 
.      2(l   +   y) 

E       ayZ 

e
Zx   : -    

2(1 + ») - 
E       CT

Zx (6) 

If all the stresses are temperature induced for a differential 

element with only thermal-induced strain, then 

EaAT = o-p(a+a) (7a) 
x   v y   z' 

EaAT = a - u(a + a ) (7b) y   v x   z7 

EaAT = a - y(a + a )   ; (7c) z  ^v x   y'   ' 

then 

3EctAT =  (crx + ay + aj^l -  2p)   . (8) 

8 



Subtract Eq. (7b) from Eq. (7a) and Eq. (7c) from Eq. (7b) to obtain 

ax " ^y - 0y + ^x = 0 ^ ax = ay 

^ - POz - CTZ + yay = 0 =4 ay = az 

or 

EaAT (a) 
x    y     z    1 - 2y 

Therefore, expansion of the differential element may be prevented by 

the application of a hydrostatic stress: 

»t - r^    • (10) 

The equilibrium equations, Eq. (2), without body forces present take 

the form 

3a        3a 3cr 
_^ + _J2.+ -II   =    0 
3 3 3„ x y z 

3a        3a 3am 
_i+ _SL + _S: = 0 
3 3 3 y z x 

3a        3a 3a 
_^ + _^ + _y£ = o    . (n) 
3z 9x 3y 

Consider a differential stress element with the unit normals, as 

given in Figure 1, The stress vectors on the faces n , n , and n^  are 



n 

Figure 1.  Differential stress element with unit normals nx,ny,nz. 

10 



S  =ai + a  j+ o  k 
x    xx    xy V  xz 

r  i + a  j + a  k 
xy   yy J  yz 

S=ai + a„j+a,7k   , (12) z     xz     yz ^   zz 

respectively.  The equilibrium equations may now be expressed as 

V • S  = 0 
x 

V • S  = 0 
y 

V • s  = o 
z 

(13) 

The stress components may now be written in terms of strain components. 

Let 

_  E • (U) 
2(1 + M)        ' 

then      a       =    2G 
x idx      1 - 2\i 

' 3w ,        y 
a 

z 
2G ^ + r^rv-p 

9u  .   9w 
xz 0 =    G    ^ + ^ 

P |3w + il 
ayz Uy      3z 

a =     G|^+^i (15) 
xy 9y      9x 

11 



In Eq. (15), p is the deformation vector tetween the loaded and 

unloaded conditions for the solid and is given by 

^ = ui + vj + wk 

Substituting Eq. (15) into Eq. (12) yields 

(16) 

sx = o - + £Wi^V-p 

, with thermal stress persent, a -I  ^^ term must be included for Now 

each S. stress vector. Therefore, 

l-i.        a7r\ 2uG      -^     -*      t     EaAT K    -    ^Vu + ||j+i1^_V.p-xr-^r 
x 

L        3^\      .     2yG      ^     -^      ^    EaAT 

sz   =   a(?w + |i)+kT^v.^^     • (18) 

12 



Now, for equilibrium 

v . sx   =   v • G I vu + ^   + v . i T2HS5- V • p - v • i T±-^ 

V   •  S      =0 
y 

v ' t    =   o       , (19) z 

^      7^ «  L2 1 3    :*     -M Sa       3AT n or    V  •  S      =    G W u + * >r- r- V  •  p > - 11 15- s—    =    0 x 1  - 2y  9x K 1 - 2vi  3x 

^      ^             ^   J„2              1         3     ^     -^ I          Ea       3AT 0 V  •   S      =     G W v + « s- -— V   •  p   >- < 55- *—    =    0 
y t, 1  - 2p  3y p 1 - 2y  3y 

■£     ■£ n  1^2 1 3    ^     -1-I Ea       3AT n , ~M v • s
z  =  G Vw + r^7 97v • p  -r-rrir— = 0     ;    (20) 

rearranging terms yields 

sp'r^H^r^™    ■■ ^ 
let 

X = (1 + y)(l - 2y)   ' (22) 

13 



The deformation vector function p may now be expressed in terms of the 

strain potential as 

or 

Since 

p = 2G 

2G |3X    3y J  3Z ) 

ui + vj + wk   , 

(23) 2Gp = V(f> 

Since VV • v" = VV2 = V2^, then Eq. (21) may be written as 

42^''-  I' r*T4^'2'U 

^#''2I 

^ AT, UO 

^2
t . -i2_7iT   ; (25) Y       1 - P 

a sufficient condition is that 

V2^ = -^_AT   . (26) 
1 - V 

(27) 

14 



then 

CTx 
32()) _       , 2  _ 

3x 
V   4) 

c 
3  (j) v2« 

0z 
32(t) 

V   ()) 

axy 
32* 
9x3y J 

ayZ 3   3 
y z 

j 

azx 
32(t) 

3z3x 
. (28) 

An equivalent expression for Eq. (24) is [2] 

(X + G) || + GV2u - (3A + 2G)a ||1 = 0 

0 + G) || + Gv2v - (3X + 2G)a |^ = 0 

(X + G) || + Gv
2w - (3X * 2G)a |^ = 0   , (29) 

15 



where e is the dilatation, or 

3u + 3v_ + 9w 
dx      3y  8z 

(30) 

The relationship between the stress field and temperature change nay he 

expressed as [2] 

(1. „) A . 4 ^E |^ .2
4T .qA-o 

^    9y I      M 3y   ; 

(i + u)v2oz + 4
+aE r^7v2&T + , 

32AT = 0 

2       2 

V   *'    "xy  3x9y 3x3y 
= 0 

/    \ 2     3 1    ^ 9 AT 
(l + u)V a  + -r-z- +  "E v   u/  yz  9y3z 9y9z 

32I 
2 

3 AT 
C1 + ^ ^+JZ* +  aE 3z-3x zx 

I    =    a    + a    + a .(31) 
x   y   z 

16 



B.  Laser Speckle Interferometry Theory 

Laser speckle interferograms are most commonly used to make 

surface displacement measurements of a deformed body,  Figure 2 

illustrates the basic method for making a laser speckle interferogram. 

When the diffuse surface of a structure is illuminated with coherent 

radiation, a grainy speckle effect is imaged by the eye or film plane 

of a camera due to the interference of light from the structure.  This 

speckle effect is enhanced when the structure has microscopic surface 

irregularities.  If the optical configuration remains fixed, the 

speckle pattern of the test object may be recorded on the film plane of 

a camera.  Further, if the structure is deformed, the speckle points 

shift with the deformation and a second exposure of the deformed 

speckle pattern can be made. 

Using a technique of double exposure, spec^ 5 interferograms of a 

structure are normally made by photographing the speckle pattern in a 

reference and deformed configuration. A beam of laser light is then 

passed through a region of the double exposure where the local deforma- 

tion is desired. As the beam passes through the film, the deformed and 

undeformed speckle recorded there diffract the laser light and cause an 

interference effect on a viewing screen, A diffraction halo modulated 

by light and dark bars of light is produced where the distance 2d 

between bars is inversely proportional to the distance between the 

undeformed and deformed speckle on the film plane. A normal to the 

light and dark pattern indicates the axis of deformation of the speckle. 

The theory to be presented assumes that the deformation region illumi- 

nated by the laser beam in reconstruction is uniform and that the linear 

optical theory is applicable. 

Figure 3 illustrates the reconstructed diffraction halo modulated by 

light and dark bars of light. From the linear theory [3], the displace- 

ment in the 9 direction of a point on the body is given as 

¥£ (32) 
2d 

17 



(A) FORMATION PROCESS 

COHERENT LIGHT SOURCE 

/ ^-DEFORMED BODY (CYLINDER) 

^-UNDEFORMED BODY 

FILM PLANE 

PATH OF LASER BEAM 
ILLUMINATION 

(B) RECONSTRUCTION PROCESS 

AXIS OF SPECKLE 
DEFORMATION 

DIFFRACTION HALO 
MODULATED BY LIGHT 

AND DARK BARS 

VIEWING SCREEN 

LASER 

REGION OF 
LASER 
BEAM 

LLUMINATION 

FILM PLANE 

DOUBLE EXPOSURE INTERFEROGRAM 

Figure 2.     Laser speckle interferometry configuration. 
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CENTRAL BRIGHT SPOT 
FROM LASER 

DIFFRACTION HALO 

FIRST MINIMA IN 
LIGHT FIELD 

Figure 3.     Diffraction halo geometry. 
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where  S 5 film scale factor (magnification ratio) 

X = wavelength of laser illumination source 

f H distance from interferogram to analyzer screen 

d = distance from central bright spot to first minima 

U  H displacement of the point illuminated by the laser on the 
9 

object in the 6 direction 

The vertical, U , and horizontal, UH, components of displacement 

may be obtained from U. as 

UH = u6cos e  = IT1 COS e 

Sxf^a (33) 
v U _ U    sin e    =    23" sin e 

and from the geometry 

d cos e 

d 

V 

sin 6 

Therefore, 

UH = 
SXf 

Uv = 
SXf 

(34) 

(35) 

Laser speckle interferometry can be used to make very accurate 

measurements of the in-plane deformation of solids. However, out-of- 

place deformation cannot be usefully measured with this technique. 

20 



Therefore the technique suffers slightly. In many cases (i.e., thin 

plates), out-of-plane deformation estimations can be made, which allow 

accurate measurements of temperature change to be predicted.  In a 

typical application, laser speckle interferometry may be used to 

estimate the u and v components of deformation, a postulation between 

the dependence between the w component of deformation and temperature 

change may be made, and the temperature change of the solid may be 

estimated based on the simplification of Eq. (29). 

C.  Thermal Expansion of a Heated Rod 

For a uniformly heated rod (Figure 4), the expansion with 

temperature change may be estimated from 

Ae -     aLAT (36) 

where Ae = change in the rod length 

a = coefficient of thermal expansion 

L = rod length 

AT = temperature change of rod (uniform) 

For a 12-inch rod with a coefficient of thermal expansion equal to 

1.66 x Id-5 "C-1, a .502 0C temperature change is required to achieve a 

Ae = .0001 inch. Figure 5 illustrates the dependence between Ae and AT 

for various L. 

Ae 

h—L—it- 

Figure 4.  Thermal expansion of a uniformly heated rod. 
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60oC " 

50oC - 

A0oC - 

30oC - 

20oC - 
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0oC 

005 

Ae (in.) 

5o„-l 
Figure 5, AT versus Ae for various rod lengths (L), o = 1.66 x 10" "C 
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D. Thermal Stress Deformation of a Thin Circular Plate Neglecting 
the z Component of Deformation 

The general temperature/deformation equations take the form 

V2^ = -l£L_AT 
1 - y 

V* (37) 
2G 

The Laplacian and Gradient in cylindrical coordinates are 

2 
V ^ r zr {   arj  ^ 9e^  3Z^ 

vq)    ar r  r 36 e  9z z 

For a circular plate with a radial temperature distribution AT = AT(r) 

and neglecting the z component of plate deformation. 

19_ r3i  =  Sa_AT 
r 3r I 3r |    1 - y 

^ = (j)(r) only. (39) 

For such a symmetric circular plate. 

He (40) 
3r r 

23 



Therefore, 

r 3r   I     3r 1 - V 

9     I     3(t) I rEa     AT 
^7 r^ = r^irAT 

rr 
TH    =    f    Jrt±_ AT dr + C, 

9r /     1 - p 1 
'o 

21    =    1 fr J^L. AT dr + ^ 
3r rj     1 - v v 

C1    =    0        since p = 0 at r = 0 

P    ~    ^G    "    2G97er (41) 

and 

)  1    fV    rEa 
p5?yo rrr AT dr    e   [      . (42) 

The radial deformation measured with laser speckle interferometry may 

be expressed as 

^t , (43) 
r ~r x(jV    r P^ e      =    -r-r e7 

24 



where    S = film scale factor 

f E viewing screen to interferogram distance 

X = light source wavelength 

m = fringe order 

x(r) = fringe spacing 

Substituting Eq. (A3) into Eq, (42), 

mXfS A   _  1  /"  rEa  ArT1.  
A / , , ^ e-   *  IGF J   rrr7ATdre
r      > (44) ^J  r   -   ^F Jo 

or 

x(r) 
r    rEa '    ' W /    f^  ^ 

X (r)    - 

2GnXfSr  /      1  - y 

2  {.Cl
E
+y))inXfSr 2 

1^1/ 
r 

rATdr 
o 

mAfSr 

a /  rAT(r)di 

(45) 

For laboratory analysis, x(r) Is measured as the first minima to first 

minima spacing; i.e., m = 1. Therefore, 

(l^i|XfSr 
X(r) = JZpj    . (46) 

a / rAT(r)di 

25 



E.  Thermal Stress Deformation of a Thin Circular Plate with a 
Correction for the z Component of Deformation 

Consider a thin circular plate as shown in Figure 6. The 

potential function for this case is 41 = f(r,z).; 

therefore 

z\ 

and 

1H  it 
r ^r rtr 

i'ttift.ifl   =    .E°      tT        . (48) ■•^    17   17  "   T^ 

To simplify, let 

AT = AT(r); 

thus 

Fir    TT    7T,  "   r^T^^       ' K^) 

ar        8z 

and 

Vdi 1      9(1) A 3* ^ mXfS '     ,     9<t)    " /cnN 
4    =    ^G    3ler + ^ez      =    ^Ter + 2Ga7ez ' (50) 

26 



Figure 6. Thermal stress deformation of a thin circular plate 
with p and p components of deformation, 

r    2 
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or 

1 3^ _ mAfS 
7G 3r    KrJ 

it = 2GmXfS (51) 

The thermal profile equation then takes the form 

i 2^fS + 2Gffl,fS |_ ( 1 | + ^ = ^-ATCr)   .        (52) 
r x- vr"™i°K]imr7? " -^r 

With laser speckle interferometry, the e component of displacement 
2   2. 

cannot be measured.  Only an estimate of the significance of 3 (JJ/SZ in 

the thermal profile equation can be made. Assume that the plate is of 

thickness 2t, which is thin enough that there is no temperature variation 

in the z direction. Figure 7 illustrates the assumed deformation pro- 

file. From this figure, the deformation is linear with z and takes the 

form 

-»■        n,        ' 13*" pz = aAT z ez = ^ — ez 

|i = 2GaAT z 3z 

11 = 2GaAT   , (53) 
3z 

28 
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Substituting Eq.  (53) into Eq.   (52) yields 

1 2G mXfo + 2GniAfS |_ j^j + 2M    ■    ^ ATW 

and 

'T(r> (rH" 2Ga}     F    2GmXfS (54) 

Define 

D(r) 
ir K^j" 3r fe7( 

3    = 
mAfS 

2a M ■ (55) 

then 

AT(r)    =    SD(r) (56) 

Let 

r(r) K^J     ' (57) 

then 

ATM    -    |8# r        3r 
(58) 
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F. Thin Plate Thermostress Equations in Rectangular Coordinates 

In rectangular coordinates. 

2Gp = V(|) 
di>  " 9di '    3d) 
—I- e +   p +  T p 
8x x  8y y  9z z 

1 ~ y 

2    2    2 8 (()  3 (Ji  3 ({> 

9x   3y   3z 
(59) 

By substituting. 

fe (2*x) * % (2*y) * fe (a*,) • ^ AT 

9P, 3p   9p 

9y   9z 
1 + M1 

r^nr AT (60) 

In general. 

AT 1 - M 
1 + P 

9p   9p   9p ] 

9x   9y   9z (61) 

For thin plates, there are two independent approximations; 

1.  pz = aATz 

9z = aAT 

2. 
9z 
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It is important to note that in many instances, Eq, (61) will not 

satisfy all the boundary conditions of a problem.  For approximation 1, 

Let 

Ift-UL] 
a   U + U j 

h = 1 _ (1 -y 
1 + y 

Therefore 

3PX BP. 

For approximation 2,  let 

(63) 

(64) 

*a'iM     • (65) 

then 

Using laser speckle interferometry, approximation 1 may be expressed as 

-■^IfefeHfe)! 
and approximation 2 is 
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G. Numerical Differentiation of the Thermal Induced Deformation 
Field to Predict Temperature Change 

Suppose the temperature change upon heating or cooling is 

desired at some location i,j on a body.  The x components U^, IK, 

U. , and the y components V. -, , V. V. -, of displacement have been 
J+1 

determined. Figure 8 illustrates the geometry. 

>1 
MASUREMENT POINT 

i 
ui-l ui' vj 

d -—• 

VJ-1 

*  d 

ui+l 

DISPLACEMENTS ARE OBTAINED 
FROM THE LASER SPECKLE 
INTERFEROGRAM AT LOCATIONS 
i-1, i, i+1, j, j-1, J+l AND 
USED TO DETERMINE AT... 

Figure 8, Geometry for measuring temperature change 
AT at location i,j. 
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The approximation to the derivative 

3p   3p 

)(x,y)  =  ^r + ^r 9x   3y 
(69) 

may be obtained as follows; 

9P, 1 |Ui  - Ui-1   . Ui+1 - Ui 
7 i—a—        d 

1+1        1-1 
 5d  

3py  .   i  VVl+VlZi v.±1 - v. 1 

 5H  

or 

p(x,y)   s 
ui+i - Vi+ Vi - Vi 
 5d  

(70) 

Using laser speckle interferometry, 

p(x,y) 
SXf 
^-1 

1  +  
1 

^i+l   ^i-1 v.+1  
dv. , 

J+l  J-l 

(71) 

H. Deformation of Circular Flat Plates in Cylindrical 
Coordinates 

The following set of equations are derived in cylindrical 

coordinates to relate the change of temperature field in thin circular 

flat plates to the corresponding deformation field. For cylindrical 

coordinates, 
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^r^n Ea  l^ 
1 - 2M 

(72) 

VQ = —— e +  »—- e + —— e (73) 

i  r 99   8z 
(74) 

9r v ^T'      T  99 vv9/  9z vyz 
+ - C*J (75) 

The derivatives of the cylindrical vectors e and e are [4] 
9     r 

99 e9    "er (76) 

99 er '  e9 (77) 

Since 

P  = 2S (78) 

then 

H 21-^ \t- rlV)^ 
■ 

2            T          -*-» 
P     = ^i^gk^T 

(79) 

(80) 
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Let 

1 
1 ^ 2y 

(81) 

B ~   1 - 2p 
(82) 

Now Eq. (80) may be written as 

2   •»■•*• 
iV  + Y^V* ' p  = 6VAT (83) 

Expanding Eq. (83), 

13 
r 3r I"" 9r 

+ i 3
2 +3

2 

7^  ^J D e + D„e„ + p e 
^r r  ^6 9  ^z z 

+ v I       P + _   p +   p I I— p + — — e + — e r\3r r  r 36 0  3z z/ \3r r  r 39 6  3z z 

p e + p„e„ + p e 
r r  He G   z z 

i_;+i|_2+L.e I AY 
3r r  r 36 0  3z z ' 

(84) 
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Further expansion yields 

13     13 1 3     I    3 
F97r9FlPrer     +F^   r a7   pee( 

laid 
r 97 r   97 l0zez 

* 7^ W + 7^ f^) * 7& ^ 

9z (v.) 
9_ 

9z~ 
+ -7 lpeee; + TT lp"e 

9z z  z 

k Y  19     ;     ,   1  9     ' 9     ^ +   t  < — e    + e    + —— e 
9r    r      r 99     9       9z    z ) (FIF (rpr) + 7lFp( 

+ l¥pz! 
SAT "  + 1 9AT "   9_AT A I 
i9r er  r 99 ee + 9z ezl (85) 

In cylindrical coordinates, 

*    (   l\ 9Pr 

99   \prer/ 96" 90- e
r 

+ pre6 (86) 

^2 
pr " pr * pr A 

^-er +  9^e9  +  99-e9-pr
e
r (pr;r)    ' (87) 

3P. 9     /    "  \ ^9  ' 
99" VPeeej     =     99" e9  " p 9er (88) 

9 

96 (pe;6)   = 

9  p 
0  * K9 3PQ  ^ 9P, 

99 5" ce " 99" er " 99" er - p9e0 (89) 
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Substituting Eqs. (86), (87), (88), and (89) into Eq. (85) yields 

FIF |r *r| er+ FIF |r I? (peee)}+ FIF |r 

8p
: 

,2 
1 r 2        r 
7^ r   7^" e 

P
r^ 
r 

2 
i   9pe ^ 
r    96 

2   8pe ^      pe " 

1    8 Pz a2P. 
+ ^-T-ez + —-e    +--e. 

r    86 3z 

r 
2    "T 

9 P, 

3z 

92P. 

3z 2       z 
e    + Y 

3     ll 9     /     \   u 1 3    ft 
9F   FiFrr)  +F^-p 0 +^pz    ei 

v 3    Jl 3     /     N      19 ,9 1: 
F9e-\F9F KJ + F^-p6 + 97Pz| e€ 

9     (l 9     /      \      1  9    ^ 
97 F9FVrpr; + FTnrp 6 + "Si" pz(   ez 

I9AT * 1  9AT * 9AT 
|3r" er + F ■JF" e6 + "ST" (90) 
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Assume for the cylindrical plate that due to symmetry,  p.   = 0. 

Therefore, 

r 3r  1    9r   J er      r 3r  (r 8r~f ez + r2 ^7" er        2 99    ee 

^2 ^2 .2 
Pr . i    3 Pz ^ 9 Pr ^ 9 Pz ^ 
~? er + ~? ""T" ez + "T" er + "T" ez r      r      r    36^       Z       Sz^       r      3z^       Z 

* Y 
3r iFlr   (rpr) 

+ hpz ■  e 

3P, 

36     r 3r  V   T/       3z 

3       13     /      \      8pz 
Hlr^? Vrpr;+ 3i- 

D   I3AT " 1  3AT " 3AT " 
=    B    — er + F36-ee  + — ez| (91) 

Assume that p    = p (r) and p    = p  (r,z);  then 

r 3r        3r        r   . r 3r        3r   {    z 

P     * 3  o     A 

—»r e    + —«— e ^    r      ^2      5 
r 3z 

Y IF FIF (rpr) 
3Pzh + — K 

3_ )1  3_ 
3z  |r 3r 

9p, K) * ? 
BIT;    +  IJiT;    t JAT; 
3r      r      r 39      9      3z      z 

(92) 
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From Eq. (92), 

3AT 
36 

(93) 

Examine the e variation in Eq. (92); 

1 3    aPr ~  Prer + 
r 3r    r   r   2 3r |r 3r v'r/  3z 

a   3AT »        ,a.s 

or 

1 3  | 3prl  pr +  3 jl 3  /  \ + 
9pzl _ . 3AT 

F 37 |r 3^J " ^ + Y 37 \7 37 lfprj + —J - B 37" (95) 

Expanding Eq. (95), 

2 
9 P. ■T +  1 

3pr  pr +  8 , 
T^     r 3r    2  ' 3r 3r   r I  ' 3r3z 

3r r       v       / 

3pr + Pr 
.2 
9 P, 3AT 

3r 
(96) 

^2 9 P^  T op   P r  H 1 'r   r 
~T~  r 3r    ?  Y , 3r r     3r 

32p     3p 
r  + 1  r 

"T"  r "Sr   Y 2  Y 3r3z 
r 

^2 
P     9 P„ r .     z 3AT 

3r 
3AT   (97) 

? 2 
3 p , 3p p     3 p,, 

3r r 

3AT 
3r ¥±     (98) 

2 12 3 p n 3p   p      3 p 
V   Y; \ 2 r 3r   ^|  Y 3r9z 

3r r 

3AT 
3r (99) 

40 



In general, assume p = aZAT(r). Then z 

Y 8r3z Y ^ (aAT) ya 
9AT 
8r 

(100) 

and 

(i + Y) ' 
9 P 

3r 

r + 1  r 
r 3r 

r 
~2 (g - ay) 

3AT 
3r (101) 

2 
9 P   T 9p   p _ r + £  r   r 
'TT'     r ^r~ " 2 9r r 

B - OY I 9AT 
il + Y I 9r 

(102) 

From Eq. (102), 

B - aY 
1 + Y 

2a + 2pa 
1 - 2y r^-^r = r-i 

1 + r^: 
(103) 

r = air^r (104) 

Equation (102) may now be expressed as: 

9 P 
£+i 

9P,.  P 
r 3r 

v 
T r 

9AT 
(105) 

3 AT 
3r (106) 
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and 

3r |3r   r 
3AT 
3r 

(107) 

Finally, 

r 
dp    0 

ar   r + c = AT(r) (108) 

Equation. (108) is based on the following assumptions: 

AT = AT(r) 

Pr 
s Pr(

r) 

^e '   0 
pz = azAT(r) 

I. General Thermostress Equations for Thin Plates in Rectangular 
Coordinates 

The general thermostress equations in rectangular coordinates 

have the form 

2    1   -A-i I -t 
iv * r-^7 VV p Ea  ^Arp (109) 

or if 

e  = 
1 _ 1  Ea «2 (1 + y) 

1 - 2u    ^ 

then 

V  + yVV') p  =  BVAT (no) 
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Expanding Eq. (110) yields 

17?   T?+ rr 3x   3y   8z 
(p i + p j + p„k 
\ x    y^   z ) + Y JBx 1 + 3? 

a   W3p   
3Py + 

9Pzl 
+ ^k  ^  ^T  ^"1 

6   -I1 + ||I5 + -U      , (m) 

or 

^2 8 P, 
.2    ,2 
8 p   3 p x .  Kx 

Y i 
9x    3y 3z 

a2P. a
2P z. * 3

2P, 

9x 2"  3x3y  3x3z 
3AT 
3x 

2     2     2 
3 p   3 p   3 p 

3x 3y    3z 

3
2P, 

3y3x 

.2    ^2 3 p   3 p 
y +  z 

9y 
3y3z 

3AT 
ay 

2     2     2      12     2     2 
3 p   3 p   3 p      3 p   3 p   3 p„ 

^ ^ I?- T H ^ ^ . B||l   .   (112) 

Now, if for thin plates 

pz -    aZAT(x,y) (113) 

then 
3P, 

3z = aAT (114) 

3x3z 
3AT 
3x 

(115) 

3y3z 
3AT 
9y 

U16) 

A3 



Assume o    and p are not functions of z.  Then 
x    y 

2     2 
3 Px  9 px 

3x ay 

2     2 
3 px  3 Pv    8AT 

-  +  s^ + a —— 
TT^  8x9y    3x 
3x 

3AT 
3x 

(117) 

„2    ^2 
3 p   3 p 

y +  y + 

3x 8y 

32px  82py    3AT 
8y 

3AT 
^7" (118) 

Simplifying terms, 

(l + Y) 
32P. 

3x 

9 P. 

9y 

^2 

3x 
(119) 

92P 
(1 - T) -/ 

ay 

2       2 
3 Py    3 Px 

-a + v —- ~r^  Y 3x3y 
3x 

(6 - Ycx) ^r- (120) 

J. Thermal Stress Deformation of a Thin Circular Plate^With a 
Modified Correction for the z Component of Deformation 

The prohlem associated with assuming that the Pz component of 

deformation obeys Eq. (113) is that the p^ contribution of deformation 

to the p component is not accounted for. The following derivation 

assumes that the material comprising the plate is largely incompressible 

and that changes in p may be directly related to changes in the p^ 

component. The coordinates for a circular plate are shown in Figure 9. 

For the thin circular plate, at r the deformation is pr and at r + Ar 

the deformation is 

i^r + Ar) = p 
ap. 

+  
r  3r 

Ar 
3p 

3r" 
Ar (121) 

AA 



Figure 9. Coordinates for a circular plate. 
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The initial volume V. of the material contained between r and r + Ar is 

V. =  [n (r + Ar) - nr J t   , (122) 

where t is the plate thickness. Upon heating or cooling the plate, the 

new volume is 

V, n 1r + Ar + pr + ^ Ari n (r + pr) (123) 

where t is the new plate thickness. 

. Equating terms, 

h ^r + pr' * Ar) - n (r + Pr) j In (r + Ar)2 - nr2[ t 

8p r 
p + -r— Ar r  3r 

?    ? 2    2      i  ' 
+ p ' + Ar + 2rp ' + 2rAr + 2p 'Ar - r - p  - 2rp^[ t fj. •'■p '■■£ r     xj 

r2 + 2rAr + Ar2 - r2 , 
('124) 

Let 

p ' = p + e   , r     r 
(125) 

9pr 
where e = -— Ar 

3r 
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Then 

,2 / \2 2        2 
(Pr 

+ ^    =    p/ + e2 + 2epr . (126) 

Substituting terms, 

• / 2 2 \ 
t ^e + 2epr + Ar + 2re + 2rAr + 2p Ar + 2Are ) 

= (2rAr + Ar2) t (127) 

t  _ 2rAr + Ar 

f9Pr  F  J9Pr.   I       i    p^~l T^T 
•Ar [pr + Ar + 2rj^ri-Ar| + 2rAr + 2piAr + 2Ar *-£ 

(9pr   p   pp7 { —Ar) +2{^ 
(128) 

Simplifying and neglecting small terms, 

t 
9pr    3pr 3p 

o  .  + r —— + r + o     L + pr 8r   x 8r   r  pr       ar 

(129) 

Now, 

2- = -T-^TTT  • ' C130) FS 
i 

And at z = t/2, the deformation is t /2 - t/2, 
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Using the correction term of Eqs. (11^+) and (130), 

p Cr,z) = azATCr) + 

1 + 
3P, 

9r 

(131) 

Pz  Cr,z) 

3P, 
z -  z  - z    

azAT(r) +   

1 + 
ar 

•tAT(r) - T^- .  (132) 

The thermostress equations in cylindrical coordinates are 

(1 + Y) 
8 P n 9p   P  r H _1_ Kr  Mr 
^2   r 9r " "T 
3r P 

»2P. 
f + Y   ' 9r3z 

9AT 
3r 

(1 + Y) 

L2 
3 p 

9r 2^  3r \r 
> + 

3r3z 
3AT 
3r (133) 

Substituting Eq. (132) into Eq. (133), 

(i + Y) 

2 
9 p 

9r 
2^  9r \r T 9r 

aAT - 
9r 

9AT 
9r 

(i + Y)' 'ill 
9r 

9 rv 
5r \r , (i + Y) - 

9 pr     9AT 

9r 

9AT 
9r 

92P *  fp 
_l£+ (i + Y)1_ _£ 
9r v 

(6 - OY) 
5AT 
9r 

(e - ay) 
9AT 
9r 

9_ 
9r 

9p p 
(134) 
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Integrating, 

3P. 
3 - cry 3r   v   r/ r j 

(135) 

Suppose the plate is infinite in extent; i.e., @ r = °°, p = 0, 

9p /3r = 0, and AT = 0. This implies that C = 0.  Therefore, 

g - ay 9r       Y/ r 
(136) 

for an infinite plate. 

K. Least Squares Method of Differentiating Experimental Data 

Assume that N measurements of radial deformation (p.j were 

taken in some region of a thin circular plate. Assume that the deforma- 

tion in this region is given by 

3 2 
p      =    kr    + Br * Cr + D 
■ r 

(137) 

Forming the square of the difference (difference function) between the 

curve given by Eq. (13?) and the experimental data [5], 

I, ^ - K3 + Bri2 + cri+ D)J (138) 

Differentiating with respect to the unknows to obtain an extrema. 
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96 

3A 
1 = 0 = A ti "  ^^ " ^^ '  ^i " D] 

36. N r      -?     p        1  ' 
3^ = 0 = ^ [p. - Ar^ - Br^ - Cr. - DJ r. 

36 

30 
1 = 0 = A [Pl " ^^ " ^^ " ^i ' D] ^ 

36. N 
 i. = o = r >, - Ar.3 r Br.2 - Cr. - D 

1    i     i     !   1 
(139) 

N 
Let  E =  E 

i=l 

and rearrange terms to obtain 

ASr.6 + BSr^ + C%T^  + D2ri
3 = ^Q^^ 

A2r.5 + B2r/ + CSr.3 + D5r.2    =   2p.r.2 

A2r/ + B2r.3 + C2r.2 + D2r.     =    2p.r 
i i i ill 

A2r.3 + B2r.2 + CS^ + DN    =    2pi (140) 
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Let R6 = Lr. S3 = Ip.r.' 

R5 S2 = Lp.r.' 
i i 

R4 

R3 

= & 

Lr, 

SI Lp-r- ^ i i 

S0 = If 

R2 = lr. 

Rl 

R0 = N (UD 

Then S3 = A*R6 + B'R5 + C'R/4 + D'R3 

S2 = A-R5 + B-R^ + C-R3 + D-R2 

SI = A'R4 + B-R3 + C-R2 + D-Rl 

S0 - A'R3 + B.R2 + C.R1 + D.R0 (142) 

Equation (14-2) may te expressed in matrix form as 

R6 R5 R4 R3 A S3 
R5 RA R3 R2 

0 
B S2 

R4 R3 R2 Rl C SI 

R3 R2 Rl R0 D S0 (143) 

Equation (143) may be solved for A, B, C, and D—thus giving the 

equation for Pr with a least squares curve fit. These curves can then 

be more readily differentiated in the thermostress equations to obtain 

better results. 
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L. Polynomial Approximation to the Thin Plate Thermostress 
Equation in Cylindrical Coordinates 

The thin plate thermostress equation in cylindrical 

coordinates may be given as 

r |_^I + ^1 + C = AT(r) 
I9r   r 

a \l + -_     ■ («*' 

The difference in temperature Tr R between location r and Ro is 
o 

given as 

ATr 

Suppose 

"R0     P  
r I 

R o 
(145) 

P. - Ar2 + Br + C (146) 

for a thin plate. Then 

!^1 = 2Ar + B   , (U7) 
8r ' 

and 
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AT 
r-R 

■r   j2Ar + B + Ar + B + - 
R 

AT r-R -F    3Ar +2B + £j 
R 

AT    D -r   {3AR    + 2B + J- -  3Ar  - 2B - - o R r (148) 

But C = 0,   since p    - 0 at r = 0.    Therefore ' r 

AT =   -3Ar   [R    - r] 
o 

^r_R      =    3AT   [r - Ro] (U9) 

Now,, 

SAT   =   „ 1. I!!! + ^r I 
9r 9r   |3r        r (150) 

Suppose 

p       =    Ar    + Br      , (151) 

then 

r |_ |2Ar + B + Ar + 
9r   l B} 

3 AT 
(152) 

or 
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||^ = 3Ar   . (153) 

Equation (153) may be used to estimate thermal gradients from 

experimental data. 

III.  EXPERIMENTAL EXAMPLES 

The following three eases were used to test the theory presented 

in Section II. Two problems are treated in this section: 

a. The heating of a thin circular flat plate at its center by 

external heat generation. 

b. The uniform heating of a rod. 

The thin circular flat plate problem is treated in Sections IIIB and 

HID, and the uniform heating of a rod is treated in Section IIIC. 

A. Computer System for Analyzing Laser Speckle Interferograms 

Figure 10 illustrates the automated system used to analyze 

laser speckle interferograms. A description of the system and its 

functional components are documented in reference [3]. The system was 

used in the manual mode, and the computer programs used to control the 

system are listed in the appendix. 

B. Temperature Change Measurements for a Heated Circular Flat 
Plate (Case I) 

This test was conducted to examine the accuracy in measuring 

a temperature change AT in a circular flat plate using laser speckle 

interferometry. The plate may be classed as a thin circular flat plate 

subject to a heat source located at the center.  The heat source was 

obtained from electrical resistive heating located at the center of the 

plate. The resulting temperature profile of the plate tends to be a 

function of the radial distance from the center of the plate. 

Figure 11 illustrates the basic laboratory configuration for 

measuring temperature changes in circular flat plates subject to a 

radial symmetric temperature distribution.  In the test, an 18.0-inch 

diameter, 0.125-inch-thick aluminum plate (Figure 12) was mounted onto 

a heater element support (Figure 13)-  The heater element support was 

also aluminum and was covered with a 0.25-inch-thick layer of 
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Figure 10.  System used to analyze laser speckle interferograms, 
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Figure 13.    Heater element support. 
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compressed K-wool. Nichrome wire was wrapped around the circuinference 

and length of the support to serve as a heater element. Again, K-wool 

was wrapped around the wire to electrically insulate it from any metal. 

The plate and heater were then inserted into the plate heater unit 

holder (Figure 14-),  In order to provide electric power access, 

0.13-lnGh~diameter holes were provided in the holder.  The plate heater 

holder was then bolted to the heater unit support base (Figure 15), 

which was then bolted to an NRC air table for laser speckle work. 

In order to determine the accuracy in measuring temperature fields 

with laser speckle, a series of .0625-inch-diameter, .095-inch-deep 

holes were drilled at various radial distances on the circular plate 

(Figure 12).  Copper-constanton thermocouples were attached in each of 

these holes using a conductive epoxy. This compound is available from 

Ablestik Laboratories, 833 West l82d Street, Gardena, CA 902-48, and 

consisted of the following: 

. Ablebond l63'-4, part C pure.copper powder 
(4- parts) 

• Ablebond 163-4-, part A resin component 
(2 parts) 

. Ablebond 163-4, part B hardener component 
(1 part) 

Figure 16 illustrates a typical thermocouple attached to the aluminum 

plate.  It is unfortunate that a significant amount of heat can be 

conducted away from the thermocouple attachment point with this design, 

but it was the best known alternative available. A better alternative 

would have been to use a semiconductor thermal radiation detector or 

liquid crystals, but these mere not readily available.  Figure 17 

illustrates the complete assembly of eight thermocouples which were 

mounted on the circular flat plate. Each of the thermocouples, includ- 

ing a reference at 0° C, was individually switched to a Leeds and 

Northrup 8690 potentiometer, using the electrical skematic shown in 

Figure 18. The rotary switch is shown in Figure 19. A voltage divider, 

using l-kQ,  resistors, was used to plot thermocouple output versus 

thermocouple number.  The reference thermocouple temperature at 0° C 
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■■:■ .   ..■:■.   ■  ■.. ■ 

Figure 16. Attachment of iron-constantan thermocouples to 
aluminum plate. 
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wh^iM&iiiil'v'i' 

Figure 17. Complete assembly of thermocouples on the 
circular flat plate. 
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THERMOCOUPLES 

,o 

COPPER LEAD 
ON POTENTIOMETER 
OR Y CHANNEL 
OF PLOTTER 

CONSTANTAN LEAD 
r^ ON POTENTIOMETER 
^ OR Y CHANNEL 

OF PLOTTER 

MULTICHANNEL 
ROTARY SWITCH 

*. XY-PLOTTER 
i^X CHANNEL (+) 

<% 10 VOLTS 

<^ GROUND 

^ XY-PLOTTER 
1>X CHANNEL 

GROUND 

Figure 18.     Thermocouple switch network schematic. 
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Figure 19. Thermocouple rotary switch. 
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was obtained from a reference bath (Figure 20), This device could 

provide a cold junction for several hours before any ice replacement 

was needed. Figure 21 is a photograph of the Leeds and Northrup 

Millivolt Potentiometer. 

In order to supply electrical power to the circular flat plate 

heater element (Figure 11), a Redlake Labs Autotransformer at about 

50-V-a.c. output (variable) was used, A piece of Nichrome wire was 

placed in series with the heater element to observe the plate heater 

performance. When the "glow wire" was a bright red, the proper current 

flow was presented in the heater assembly. At this point, the maximum 

rise in plate temperature with time was observed. 

Laser illumination of the plate was accomplished by expanding the 

output of a 6328 A spectra physics Model 125, 50-mW He-Ne laser. A 

spectra physics Model 332 spatial filter was used for this purpose. 

Exposure control of the laser was performed using a Jodon ES-lOO 

electronic shutter (Figure 22),  The output of the laser was passed 

through a horizontally oriented cylindrical lens to produce a narrow 

concentrated rectangular beam of light, which measured 10.2 mm by 

228.6 mm in the horizontal 0-direction on the circular plate.  Beam 

control was performed using two X/A front surface mirrors and an 

aperture for beam expansion. 

In the test, an attempt to measure the temperature rise at station 

#1 (r = 1.1 in.) was made. Two 32-second exposures were made using 

AGFA GAVAERT holographic film. The initial station #1 temperature was 

81° F when the first - exposure was made.  The plate was then heated to a 

thermocouple measured temperature of 112° F, and a second laser 

exposure was made. The net temperature change at station #1 was 31° F, 

as measured with the thermocouple. 

Test Results - Case I: 

S = ^2_. = 2.3195 for a 9-inch-radius plate 

f = 74 in. 

T. s 81° F 
i 

T s 112°  F 
• measured with thermocouple 
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Figure 20. Reference junction ice bath. 
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Figure 21. Leeds and Northrup 8690 Millivolt Potentiometer. 
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Figure 22.  Jodon ES-100 electronic shutter system. 
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Table 1 illustrates the data obtained from the interferogram. For 

this data, r' is the radial distance on the interferogram and r is the 

radial distance on the plate, x'd1) is the measured fringe spacing. 

The sign associated with x'Cr) determines the direction of plate trans- 

lation upon heating; (+) refers to motion in the positive X direction. 

Table 2 shows the data of Table 1 corrected for true relative 

translation, with the center of the plate having zero translation. 

Figure 23 illustrates the variation of y{r)  with r.  In order to 

differentiate y(v)  with respect to r, a quadratic curve fit of Figure 23 

is utilized. 

Y(r) = -^ ^ Ar + Br2 + C   . (154) 

The data for Eq. (72) may be tabulated as 

r Y(r) 

.30 0 

1.23 .07662 

2.44 .19012 

Solving the simultaneous linear equations in A, B, and C results in 

A =  .07415 

B =  .0054 

C = -.02273 

and 

Y(r) = .07415r + .0054r2 - .02273 
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TABLE 1.  CASE I INTERFEROMETRIC DATA 

r1 r X'(r) 1/X'(r) 

.13 .30 -2.86 -.34965 

1.05 2.^4 -3.68 -.27173 

.53 1.23 -3.48 -.28735 

1,63 3.78 ^4.68 -.21367 

2.19 5.08 -7.02 -.14245 

3.4^ 7.98 +5.75 +.17391 
3,88 9.00 + 3,93 +.25445 

TABLE 2.  CORRECTED CASE I INTERFEROMETRIC DATA 

r I Air) Y(r) 

.30 0 0 

2.44 ,07792 .19012 

1.23 .06230 .07662 

3.78 .13598 .51400 

5.08 .20720 1.05257 

7.98 .52356 4.17800 

9.00 .60410 5.43690 
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Figure 23. Case I Y(r) versus r. 
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Now from Eq. (55), 

6 = XfS |l - v 

where A = 63281    = 2.4913 X 10-5 in. 

f = 74.0 in. 

S = 2.3195 

a (Aluminum) = 24 x 10"6/oC 

p (Aluminum) =  .3 

Now, 

't' - .07415 

e a 207.86 

B .0782 
r=l.l in. r   8r 

And from Eq. (58), 

AT(r) = 207.86 (.0782) 0C S 16.25 0C 

AT(r) s 29.25 0F measured with laser speckle interferometry 

AT(r) = 31 "F   measured with a thermocouple 

Figures 24 through 27 illustrate the laboratory configuration without 

the cylindrical lens and front surface mirror optics present. 
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Figure 2<4.  Illumination direction for the flat circular plate. 
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Figure 25.  Side view of Case I experiment, illustrating the laser, 
heating system, and thermocouple read-out system. 
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~-s 

Figure 26.  Case I optical configuration without cylindrical 
lens assembly. 
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Figure 27. Back side of circular flat plate Illustrating thermocouples, 
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C. Temperature Change Measurements for a Heated Copper Bus Bar 
(Case II) 

In this experiment, a copper bus bar was submerged in a heated 

water bath and a laser speckle photograph was taken of the heated rod. 

The water was then replaced with cool water, and a second laser speckle 

photograph was taken. The double exposure interferogram was then 

analyzed, and the rod temperature was predicted based on various 

theories presented in Section II. The rod was in a state of uniform 

thermal contraction when cooled. 

The specimen was illuminated by a Spectra-Physics 166 Argon laser 

operating at .9-watt power. For the test, the following data were 

observed: 

i Initial water bath temperature = 1.280 mV = 89.7° F. 

• Final water bath temperature = .83 mV = 69.9° F. 

(Length = 9.95 in. 
• Bus bar dimensions \   Width =1.00 in. 

i Depth =0.25 in. 

• Approximately 5 in. of the bus bar was exposed in the water bath. 

• AGFA 10E56 holographic emulsion film was used with two 16-sec 

exposures. 

• Xf = 2.4913 x 10"5 (130) = .00323869 in. (reconstruction of 

interferograms was with a He-Ne laser). 

The copper bus bar is a glass beaker immersion tank, the Case II 

laboratory setup, and a side view of the Case II experiment are shown in 

Figures 28, 29, and 30, respectively. 

The data obtained from the interferogram is illustrated in Table 3. 

For this table, 

L = distance from an arbitrary reference point on the 
interferogram 

p H longitudinal specimen deformation at location L. 

X = fringe spacing in the interferogram analyzer plane. 

Ait = net longitudinal deformation measured from the arbitrary 
reference. 

All data was measured in the symmetry plane of the specimen. 
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r-• 

Figure 28.  Copper bus bar in glass beaker immersion tank, 
(Note thermocouple leads in the tank used to 
monitor water temperature.) 

79 



Figure 29.  Case II laboratory setup. 
(Note water drainage sys- 
tem, thermocouple tempera- 
ture read-out equipment, 
and the optical system.) 

, ■ 
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Figure 30. Side view of Case II experiment. 
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TABLE 3.  CASE II LABORATORY DATA 

L 
(in.) 

X 
(in. ) 

P 
(in.) 

Afc = P - P. 
(in.)   0 

0 5.54 .0005846 0 

.5 5.00 .0006477 6.310 x 10"5 

1.0 -4.30 .0007531 1.685 x 10"^ 

1.5 3.94 .0008220 2.374 x 10"4 

2.0 3.76 .0008613 2.767 x 10"^ 

For this particular case, the temperature change can be approximated 

from 

AT = i*i 
a L 

(155) 

The results of this case are shown in Table 4, where 

a   = 7.827 x 10"6/oF 
cu ' 
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TABLE 4.  CASE II TEMPERATURE MEASUREMENT RESULTS 

L 
(in.) 

A£ 
(in.) 

A£ 
TT 

AT 
(0F) 

0 0 ~ ~ 

.5 6.310 x 10"5 1.262 x 10~4 16.12 

1.0 1.685 x 10"^ 1.685 x 10~A 21.52 

1.5 2.3V4 x 10^ 1.582 x lO"4 20.21 

2,0 2.767 x 10~A 1.383 x 10"^ 17.66 

The average temperature change computed using Eq, (155) was 

18.87° F, which is ahout a 4.8 percent difference from the thermocouple 

reading of 19.8° F. 

D.  Temperature Change Measurements for a Heated Circular Flat 
Plate (Case III) 

This test was identical to Case I.  The data for this test 

case is illustrated in Tahle 5. 

TABLE 5.  CASE I TEST DATA 

r (in.) Pr (in.) 

.30* 

1.23* 

2.44 

-.001495 

-.001228 

-.001161 
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For the data in Table 5 marked with an asterisk, assume that 

p  = Ar + B 
^r 

Therefore, 

-.001495 = ,3A + B 

-,001228 = 1.23A + B (156) 

From Eq. (156), 

A = 2.8709 x 10 -4 

B = -1,5811 x 10 -3 

B is the offset error in the data of Table 5, due to a uniform trans- 

lation of the test fixture.  Therefore, the p component of deformation 
£i in Table 5 should be corrected by 1.5811 x 10 -^ in. to account for this 

uniform " 

Table 6, 

uniform translation. The corrected data, p^', is illustrated in 

TABLE 6.  CORRECTED TABLE 5 DATA 

r pr ■v 

.30 

1.23 

2.44 

-.001495 

^.001228 

...001161 

.0000861 

.0003531 

.0004201 
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Now at location r = 1.23 in.. 

!£ = 3-53\^    -    2.8707 x 10^ 

3p 
i 

9F 
_ 3.^31 x 10 4 - 8.61 x 10"' 

1.23 - .3 = 2.8709 x 10" 

3p 
1 

3r 
4.201 x 10 ^ - 3.^31 x 10~A 

2.44 - 1.23 5.5371 x 10 -5 

9P, 
= 1.7123 x 10 -4 

avg 

From Eq. (108), with C = 0 for an infinite plate solution, ,;;, 
■:':'.:■. 

|9Pr      Pr 
AT    =     r {r-^- + — 3r        r (157) 

And from the experimental data. 

AT    =    65625    1.7123 x KT4 + 2.8707 x 10"41  "F 

AT    a    30.075° F    at    r    =    1.23 in. 

AT - 31° F at r = 1,10 in. (thermocouple measurement) 

From the above results, agreement is very good. 
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IV.  CONCLUSIONS 

The theory for laser speckle interferometrlc thermoelasticity was 

presented in Section II. Two specific problems and three methods of 

data analysis were presented in Section III. Laser speckle interferom- 

etry may he used to measure the in-plane deformation of a body, hut no 

information ahout the out-of-plane component is obtainable. This 

necessarily implies that certain simplifications to the theory are 

needed. After making estimations for the out-of-plane component of 

deformation for a body, the general thermoelasticity equations are 

solvable. 

Section III illustrates that for the case of thin plates and 

uniformly heated rods, accurate temperature measurements can be made. 

As long as the deformation of some region in a body is attributed to 

localized heating, then accurate temperature measurements can be made. 

Major problems occur when the deformation is attributed to thermostress 

generated elsewhere in a body.  This case occurs at the outer radius of 

the circular flat plate where the deformation and derivatives of 

deformation are not zero. This is the result of thermostress generated 

at the center of the plate and is very difficult to analyze. 

The thermostress equations usually require some form of 

simplification, for they involve partial derivatives of the deformation 

field. After a suitable set of approximations are made, the thermo- 

elasticity equations may be made more amenable to analysis. Thermal 

gradient measurements are easily made, since many approximations to the 

deformation and temperature fields are not required. 
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APPENDIX 

Computer Codes Used to Analyze 
Laser Speckle Interferograms 
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Computer Code - 1 

C CIRCULAR   LASER   SPECKLE   INTERFEROrtET.%Y  READER 
c WRITTEN   BY:   JOHN   A.   SCHAEFFEL.     'R. 

DIMENSION   XY(10»50) rXX-^lOfSO) » YYl 10»50) 
WRITE(5»1) 

1 FORMAT (' INPUT Rl f RNr Tl »TM»N»M» IS"-4F5.0»3I2') 
READ(5f2) Rl»RN»T1»TM»NfM»IS 

2 F0RMAT(4F5.0»3I2) 
WRITE(5»3) 

3 FORMATC INPUT SF»E-2F10,0/) 
READ<5»4) SFrE 

4 FORMAT(2F10,0) 
XL=0» 
YL=0« 
DR«(RN~R1)/FLOAT(N-l) 
DT= < TM-T.1) /FLOAT (M-1) 
DO 7 I=lyM»l 
DO 7 J^lrHfl 
T=Tl+FLOAT(I-l)*DT 

. R=Rl+FLOAT(J-l)*DR 
TP=3.14159*T/180. 
X=<R/SF)*COS(TP> 
Y=<R/SF>*SIN(TP) 
IXX=INT<<X-XL)/.001) 
IYY=INT((Y-YL)/.001) 
IF(IXX»NE.O) CALL XADV( IXXi-IS) 
IFdYY.NE.O) CALL YADV<IYY»IS) 
XL=XL+FLOAT(IXX)/1000. 
YL=YL+FLOAT(IYY)/1000« 
WRITE(5»5) 

5 FORMAT(' DATA-2F5.0:') 
READ(5>6) XS»FS 

6 FORMAT(2F5.0) 
XY(I»J)=SF*E/XS 
XX<I»J>=XY(I»J)*C0S(FS*3.14159/180.) 
YY<I»J)=XY(IfJ)*SIN(FS*3.14159/180,) 

7 CONTINUE 
DO 9 I=:1»M»1 
DO 9 J=lfN»l 
T=T1+FL0AT<I-1)*DT 
R=(R1+FL0AT(J-1)*DR) 
WRITE<5»8) 11J»T>RfXY<I»J)»XX<I»J)»YY(I»J) 

8 FORMAT (' 1= ' »13 f 3X» ' J=' »13»3X y ' ANGLE--- '»F8» 2» 3X» ' R= ' tFB, 
I'XY^'yFlO.AfSXf'XX^'yFlO^^X, 'YY«'F10»Vi) 

9 CONTINUE 
IXX=-INT(XL/.001) 
IYY=-INT(YL/.001) 
IFdXX.NE.O) CALL XADUl IXX »10) 
IF(IYY.NE.O) CALL YADV<IYVf10) 
STOP 
END 
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Computer Code - 1 (Continued) 

SUBROUTINE YAW (IS*. [R) 
C  -IS-NO, STEPS C+^FWD r--=REy) 
c— •-IR-ADUANCE RATE OF ! 

IF(IS.GT.O) GOTO 3 
IP»IABS<IS) 
DO 2 I-IJIPVI 

STAGE 

. CALL IPOKEC 167772f '020000) 
DO 7 K-iflRrl 

7 Y=SIN(X) 
CALL IPOKE("167772» "000000) 
DO 1 J»lfIR»l 

1 Y-SIN(X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5 11 = 1.ISxl 
CALL IPOKEC 167772. "010000) 
DO 8 KKal»IR»i 

8 Y=SIN(X) 
CALL IPOKE("167772. "000000) 
DO 4 JJ=lrIR»l 

4 Y=SIN(X) 
S CONTINUE 
6 CONTINUE 

RETURN 
END 
SUBROUTINE XADVCISK IR) 

C  —IS-NO. STEPS (+=FWD »-=REV) 
c  — IR=--ADVANCE RATE OF 

XaO. 
IF(IS.GT.O) GOTO 3 
IP=IABS<IS) 
DO 2 I-l.IP.l 

STAGE 

CALL IPOKE("167772. "100000) 
DO 7 lOl.IR.l 

7 Y=SIN(X) 
CALL IPOKE("167772. ■000000) 
DO 1 J-l.IR.l 

1 Y=SIN<X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5 II-l.IS.l 
CALL IPOKE("167772. "040000) 
DO 8 KK«1»IR»1 

8 Y=SIN(X) 
CALL IPOKE("167772. 0000000) 
DO 4 JJ^l.IR.l 

4 Y=SIN(X) 
5 CONTINUE 
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Computer Code .- 2 

C CYLINDRICAL COORDINATES 
C LASER SPECK 1... E IN T E R F E R Q MET R Y 
C TEMPERATURE CALCULATOR CODE 
C WRITTEN BY JOHN A. SCHAEFFEL* JR. 

DIMENSION A(2!-2) 
WRITE(5»1) 

1 FORMAT(' INPUT? SF»E»PSI-3F10. 0-" ) 
READ(5»2) SF»E»SI 

2 FORMAT(3F10,0) 
3 WRITE(5r4) 
4 FORMAT(' INPUT RrTHETArDR-SFlO.O') 

READ(5»2) R»T»D 
X=R*COS(T*3.14159/180.)-D 
Y=R*SIN(T*3.14159/180,) 
IX==INT(X*1000,/SF) 
IY=INT<Y*1000./SF) 
IR=INT(D*1000./SF) 
IRR-2*IR 
IFdX.NE.O) CALL XADV(IXi>5) 
IFdY.NE.O) CALL YADV<IY»5) 
DO 7 1=1,2,1 
WRITE<5»5) 

5 FORMAT(' INPUT HORIZONTAL FRINGE SPACING-F5.0: 
READ<5^6) DH 

6 FORMAT(F5.0) 
A<1»I)=SF*E/DH 
CALL XADVdRRrS) 

7 CONTINUE 
IB=-3*IR 
CALL XADy<IBy5) 
IRRR=-IR 
CALL YADV<IRRR>5) 
DO 10 I=l»2»l 
WRITE(5»8) 

8 FORMATC INPUT VERTICAL FRINGE SPACING-F5.0! ' ) 
READ(5»9) DV ■ 

9 F0RMAT(F5.0) 
A<2yI)=SF*E/Dy 
CALL YADV(IRR»5) 

10 CONTINUE 
CALL YADV<IBr5) 
IX=-IX~IR 
IY=-IY 
IF(IX.NE.O) CALL XADV<IX»5) 
IF(IY.NE.O) CALL YADVdYfS) 
DT=SI»<A(1»2 >-A <1»1)+A < 2 » 2)-A< 2f1))/< 2.«D) 
WRITE(5»11) Di- 

ll    FORMATC DELTA TEMFERATURE CHANGE==' JF6 . 1) 
GOTO 3 
STOP 
END 
SUBROUTINE YADVCLSrlR) 
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Computer Code - 2 (Continued) 

c IS=NO.   STEPS   (+=FWD»-«REV) 
c IRaADMANCE RATE OF STAGE 

X=0. 
IF<IS*6T*0) GOTO 3 
IF-IABSCIS) 
DO 2 I«1»IP»1 
CALL IPOKE("167772 »"020000) 
DO 7 K=1»IR»1 

7 '  Y=SIN<.X) 
CALL IPOKE("167772 v"000000) 
DO 1 JfiilRrl 

1 Y^SIN(X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5 11=1»IS*1 
CALL I POKE < "167772 y - 0.1 0000) 
DO 8 KK»1»IR»1 

8 Y=SIN(X) 
CALL IPOKE("167772»"000000) 
DO 4 JJ«1I>IRP1 

A Y=SIN(X) 
5 CONTINUE 
6 CONTINUE 

RETURN 
END 
SUBROUTINE XADO(ISylR) 

c IS=NO. STEPS (+»FWD»~=REV) 
c IR=ADyANCE RATE OF STAGE 

X=0. 
IF(IS»6T.O) GOTO 3 
IP=IABS(IS) 
DO 2 I=1»IP»1 
CALL IPOKE(-167772y"100000) 
DO 7 K=lyIRyl 

7 Y=SIN(X) 
CALL .TPOKE( " 167772 y" 000000) 
DO 1 J=lyIRyl 

1 Y=SIN(X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5 11=^1 ylSyl 
CALL IPOKEC167772y"040000) 
DO 8 KK^lylRyl 

8 Y=SIN(X) 
CALL IPOKE("167772y"000000) 
DO 4 JJ-lylRyl 

4 YaSIN<X) 
5 CONTINUE 
6 CONTINUE 

RETURN 
END 
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Computer Code - 3 

C CYLINDRICAL COORCINATES 
C  LASER SPECKLE INTERFEROMETRY 
C TEMPERATURE CALCULATOR CODE 
C WRITTEN BY JOHN A, SCHAEFFEL* JR. 

WRITE<5»1) 
1 FORMATC INPUT: SF»E»PS.T-3F10.0') 

READ (Ss-2) SF»ErSI 
2 FORMAT(3F10,0) 
3 WRITE(5»4) 
4 FORMAT(' INPUT R»THETA?DR-3F5.O') 

READ(5>S) R»T»D 
5 FORMAT(3F5.0) 

X1=(R-D)*C0S(T*3.14159/180.> 
Y1==(R~D)*SIN<T*3.14159/180. ) 
X2== < 2. *D)*C0S(T*3.14159/180.) 
Y2=(2.*D)*SIN(T*3.14159/180.) 
IX1-=INT<X1*1000./SF) 
IY1^INT(Y1*1000./SF) 
IX2=-INT<X2*1000./SF) 
IY2=INT(Y2*1000./SF) 
IF(IXl.NE.O) CALL XADV(IX1»5) 
IF(IYl.NE.O) CALL YADV(IY1»5) 
WRITE(5y6) T 

6 FORMATC FRINGE SPACING AT'»1X»F5.1f1X»'DEGREES') 
READ(5»7) DH 

7 FORMAT(F5.0) 
A=(R-D)*SF*E/DH 
IF<IX2.NE.O) CALL XADV(IX2»5) 
IF(IY2.NE.O) CALL YADV(IY2f5) 
WRITE(5»8) 

8 FORMATC FRINGE SPACING AT'f1X»F5.1r1X»'DEGREES') 
READ<5»7) DH 
B=<R+D)*SF*E/DH 
C=<<(B-A)/<2.*D))/R)*SI 
WRITE(5»9) C 

9 FORMATC DELTA TEMPERATURE CHANGE==' »F5 .1) 
IX--(IX1+IX2) 
IY=-<IY1+IY2) 
IF(IX.NE.O) CALL XADV<IX!'5) 
IF(IY.NE.O) CALL YADV(IY»5) 
GOTO 3 
STOP 
END 
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Computer Code - 3 (Continued) 

SUBROUTINE   YADVdSrIR) 
C IS»NO.   STEPS   (+=FWD»-=REU) 
C IR^ADVANCE RATE OF STAGE 

x-=o. 
IF<IS«6T«0) GOTO 3 
IP=IABS<IS) 
DO 2 I=1»IP»1 
CALL IPOKEC " 167772> •'020000) 
DO 7 K^li-IRyl 

7 Y=SIN(X) 
CALL IPOKEC167772f'000000) 
DO 1 J«l*lRtl 

1 Y=SIN(X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5 Il^ltlSfl 
CALL IPOKE( "167772!'"OlOOOO) 
DO 8 KK=1»IR»1 

8 Y=SIN(X) 
CALL 1P0KE("167772»"000000) 
DO 4 JJ=1>IR»1 

4 Y=SIN(X) 
5 CONTINUE 
6 CONTINUE 

RETURN 
END 
SUBROUTINE XADV(IS,IR) 

C IS«NO. STEPS (+=FWD»-«REV) 
C IR»ADVANCI RATE OF STAGE 

X==0» 
IF<IS.GT*0) GOTO 3 
IP»IABS<IS) 
DO 2 I«1»IP>1 
CALL IP0KE(H167772»"100000) 
DO 7 K=1»IR>1. 

7 Y=SIN<X) 
CALL IPOKE( "1677721- "000000) 
DO 1 J^IJIRJ-I 

1 Y=SIN(X) 
2 CONTINUE 

GOTO 6 
3 CONTINUE 

DO 5   Xl^iflSfl 
CALL IPOKE<"167772»"040000) 
DO 8 KK=1»IR»1 

8 Y=SIN<X) 
CALL IPOKE("167772 fn 000000) 
DO 4 JJ=l»IRi-l 

4 Y=SIN(X) 
5 CONTINUE 
6 CONTINUE 

RETURN 
END 
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LIST OF SYMBOLS 

A,B,C,D        Constants 

B. Body Force Per Unit Volume 

<i,(Lrtd        Fringe Spacing From Laser Speckle Interferograms 

Cartesian System Unit Vectors 

Cylindrical System Unit Vectors 

E Modulus of Elasticity 

e ,e ,e 
x' y^ z 

r 6 z 

f Distance Between Laser Speckle Interferogram and the 
Analyzer Plane 

G Lame' Constant 

ijj.k Cartesian Unit Vectors 

1,111,11 Cartesian Direction Cosines 

L Length of Specimen 

m Fringe Order 

n .n ,n Stress Plane Direction Cosines 
x' y' z 

r^e^z Cylindrical Coordinates 

S Film Scale Factor 

«» -A -^ 
Sx>Sy,Sz Stress Vectors 

t Plate Thickness 

u v,w Components of Deformation in Cartesian Coordinates 

U , u Components of Deformation Determined by Laser Speckle 
H' V 

i 

Interferometry 

U. Components of Deformation in Cartesian Coordinates 

x,y,z Cartesian Coordinates 

Cartesian Coordinates 

Coefficient of Thermal Expansion 

X. Cartesian Coordinates 
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LIST OF SYMBOLS (CONCLUDED) 

B Material Constant 

Y Ijfeterlal Constant 

r J/feterial Constant 

Ae Total Change of Length 

AT Temperature Change 

eiJ 
Strain Tensor 

et 
Thermal Strain 

8 Angle 

X Wavelength of Light, Material Constant 

V Polsson Ratio 

P Deformation Vector 

^J 
Stress Tensor 

0n 
Stress on Plane n 

* Strain Potential 

xCr) Fringe Spacing at Radius (r) 

♦i Material Constants 

Q Some Region of a Body 

V Gradient 

^ Divergence 

v2 Laplacian 
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